Scheduling Multiple Sensors Using Particle Filters in Target Tracking
نویسندگان
چکیده
A critical component of a multi-sensor system is sensor scheduling to optimize system performance under constraints (e.g. power, bandwidth, and computation). In this paper, we apply particle filter sequential Monte Carlo methods to implement multiple sensor scheduling for target tracking. Under the constraint that only one sensor can be used at each time step, we select a sequence of sensor uses to minimize the predicted mean-square error in the target state estimate; the predicted mean-square error is approximated using the particle filter in conjunction with an extended Kalman filter approximation. Using Monte Carlo simulations, we demonstrate the improved performance of our scheduling approach over the non-scheduling case.
منابع مشابه
Multiple Persons Tracking with Data Fusion of Multiple Cameras and Floor Sensors Using Particle Filters
Successful multi-target tracking requires locating the targets and labeling their identities. For the multi-target tracking systems, the latter becomes more challenging when the targets frequently interact with each other. In this paper, we propose a method for multiple persons tracking using multiple cameras and floor sensors. Our method estimates 3D positions of human body and head, and label...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملSensor scheduling for target tracking: A Monte Carlo sampling approach
We study the problem of sensor-scheduling for target tracking—to determine which sensors to activate over time to trade off tracking performance with sensor usage costs. We approach this problem by formulating it as a partially observable Markov decision process (POMDP), and develop a Monte Carlo solution method using a combination of particle filtering for belief-state estimation and sampling-...
متن کاملMultiple and Extended Object Tracking with Poisson Spatial Processes and Variable Rate Filters
In this paper we propose a new approach for tracking manoeuvring objects using variable rate particle filters with multiple sensors. Unlike other approaches the proposed method assumes that the states change at different and unknown rates compared with the observation process, and hence is able to model parsimoniously the manoeuvring behaviours of an object. Furthermore, Poisson model is used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003